HILI Inhibits TGF-β Signaling by Interacting with Hsp90 and Promoting TβR Degradation
نویسندگان
چکیده
PIWIL2, called HILI in humans, is a member of the PIWI subfamily. This subfamily has highly conserved PAZ and Piwi domains and is implicated in several critical functions, including embryonic development, stem-cell self-renewal, RNA silencing, and translational control. However, the underlying molecular mechanism remains largely unknown. Transforming growth factor-β (TGF-β) is a secreted multifunctional protein that controls several developmental processes and the pathogenesis of many diseases. TGF-β signaling is activated by phosphorylation of transmembrane serine/threonine kinase receptors, TGF-β type II (TβRII), and type I (TβRI), which are stabilized by Hsp90 via specific interactions with this molecular chaperone. Here, we present evidence that HILI suppresses TGF-β signaling by physically associating with Hsp90 in human embryonic kidney cells (HEK-293). Our research shows that HILI mediates the loss of TGF-β-induced Smad2/3 phosphorylation. We also demonstrate that HILI interacts with Hsp90 to prevent formation of Hsp90-TβR heteromeric complexes, and improves ubiquitination and degradation of TβRs dependent on the ubiquitin E3 ligase Smurf2. This work reveals a critical negative regulation level of TGF-β signaling mediated by HILI (human PIWIL2) by its ability to interact with Hsp90 and promote TβR degradation.
منابع مشابه
HILI destabilizes microtubules by suppressing phosphorylation and Gigaxonin-mediated degradation of TBCB
Human PIWIL2, aka HILI, is a member of PIWI protein family and overexpresses in various tumors. However, the underlying mechanisms of HILI in tumorigenesis remain largely unknown. TBCB has a critical role in regulating microtubule dynamics and is overexpressed in many cancers. Here we report that HILI inhibits Gigaxonin-mediated TBCB ubiquitination and degradation by interacting with TBCB, prom...
متن کاملUSP15 regulates SMURF2 kinetics through C-lobe mediated deubiquitination
Ubiquitin modification of the TGF-β pathway components is emerging as a key mechanism of TGF-β pathway regulation. To limit TGF-β responses, TGF-β signaling is regulated through a negative feedback loop whereby the E3 ligase SMURF2 targets the TGF-β receptor (TβR) complex for ubiquitin-mediated degradation. Counteracting this process, a number of deubiquitinating (DUBs) enzymes have recently be...
متن کاملPhosphorylation of eEF1A1 at Ser300 by TβR-I Results in Inhibition of mRNA Translation
BACKGROUND Transforming growth factor β (TGF-β) is a potent inhibitor of cell proliferation that regulates cell functions by activating specific serine/threonine kinase receptors on the cell surface. Type I TGF-β receptor (TβR-I) is essential for TGF-β signaling, and substrates of TβR-I provide insights into molecular mechanisms of TGF-β signaling. RESULTS Here we identify eukaryotic elongati...
متن کاملCurcumin Inhibits Transforming Growth Factor-β1-Induced EMT via PPARγ Pathway, Not Smad Pathway in Renal Tubular Epithelial Cells
Tubulointerstitial fibrosis (TIF) is the final common pathway in the end-stage renal disease. Epithelial-to-mesenchymal transition (EMT) is considered a major contributor to the TIF by increasing the number of myofibroblasts. Curcumin, a polyphenolic compound derived from rhizomes of Curcuma, has been shown to possess potent anti-fibrotic properties but the mechanism remains elusive. We found t...
متن کاملThe TβR-I pre-helix extension is structurally ordered in the unbound form and its flanking prolines are essential for binding.
Transforming growth factor β isoforms (TGF-β) are among the most recently evolved members of a signaling superfamily with more than 30 members. TGF-β play vital roles in regulating cellular growth and differentiation, and they signal through a highly restricted subset of receptors known as TGF-β type I receptor (TβR-I) and TGF-β type II receptor (TβR-II). TGF-β's specificity for TβR-I has been ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012